THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBL:C RELEASE
UNDER DOD DIRECTIVE 5200, 20" AND
NO RESTRICTIGNS ARE IMPOSED UPON
ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELE.\SF,
DISTRIBUTION UNLIMITED.




UNCLASSIFIED

W 245 469

Reproduced
by the

A IMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other datea are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Gevern-
ment may have formilated, furnished, or in any way
supplied the sald drawings, specifications, or other
data {g not to be regarded by implication or other-
wise a8 in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



Office of Noval Research

Contract Nonr 1866 (02)

Technical Report Mo. S

THE ELASTIC MODULI OF HETEROGENEOUS MATERIALS

By

Zvi Hashin

67-1-1

XERQOX
Division of Engineering and Applied Physics

" Harvard University

Cambridge , Massachusetts
September - 1960 e
1} S
iy Nov? >3
i.ﬁ:;u...,... ; *r'»v"‘*;

1R u



OFFICE OF NAVAL RESEARCH
B Contract Nonr 1866(02)

Techrical Report No. 9

THE ELASTIC MODULI OF HE” EROGENEOUS MATERIALS
by

Zvi Hashin

Division of Ergineering and Applied Physics
Harvard University
K Cambridge, Mass.

September 1960

- ; Reproduction in whole or in
. . part is permitted for any
’ purpose of the United States
Government

TR Ry, - e

¥ 7 ooy

- T AR T S A SR T o

ot VT UM < e
“
fa)

Yo

= o b

WAare &

YT YT ORI T

PRRTIRTYORS

PENEAENN

AT ST L

8 S s A A S o At B st st
e e

S5 T ot vt ALt

Lt bRih

ety veo DA B DB Rt Ra o fore kRS
i

f3er ot ke SR L 20 R 25




AL L

Ruth

“
¥
¢

st D o i ottt SCAR et A T s WD T

LA
s U S

b
v 3

3

A A
.

Ades yos

THE ELASTIC MODULI OF HETEROGENEQUS MATERI/ LS
by

Zv: Hashin®

1. INTRODUCTION

The present work is concerned with the determination, by theoretical
analysis, of the elastic moduli of a randomly heterogeneous material.

It is assumed that the material may be adequately described by an
elastic, homogeneous and isotropic matrix the moduli of which are known,
in which particles of ancther elastic homogeneous and isotropic material
are imbedded, the moduli of which are also given. Assuming furthermore
that the volume concentration of particles is uniform and that the material
may accordingly be regarded as quasi-homogeneous the problem is to find
expressions for the effective elastic moduli of this heterogeneous material.

Numerous paners on the determination of bulk properties of
heterogeneous materials have been published. The first of these was by
Einstein (1906, 1911) in which the viscosity of a suspension was determined,
assuming that it may be described by rigid spheres suspended in a viscous
fluid and that the volume concentration is so small that particles do not
interact. The case of dilute concentration, assuming that the particles are
spherical, has been solved for a variety of materials: Liquid droplets in
another liquid, Taylor (1932); Elastic particles in viscous fluid; Froehlich
and Sack (1946); Empty holes in elastic solid, Mackenzie (1950); Rigid
particles in elastic solid, Hashin (1955); Elastic particles in another elastic
materisl, Eshelby (1957), Hashin (1958); Viscous liquid inclusions in elastic
solid, Oldroyd {1956)., Metheds of analysis for small concentration have

been recently applied by Buciansky, Hashin and Sanders (1960) to the

+Assoc:iate Professor of Engireering Mechanics, University of Pennsylvania,
Formerly, Research Fellow in Structural Mechanics, Harvard University.
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theoretical determination of the carly plastic behavior of polycrystalline
materials.

In the case of small voliras concentration the fundamental assuraption
is that particles do not interact. The effective moduli can then be determined
in a way outlined below (Section 2j.

The problem of finite concentration is much more complicated. There
is at presen® little hope of rigorously solving the problem of a medium in
which there are many interacting inclusions, The difficulty cf this kind of

problem is well illustrated by Sternverg’ s and Sadowsky's {1952) solution of

the axisymmetric problem of the theory of elasticity containing only two
spherical cavities, [See also Miyamoto (1956).]

Mosr. of the work which has been done up to now in the field of finite
concentration has been concerned with the extension of Einstein's formula,
previously mentioned, to higher concentrations. This has resulted in a large
number of different formulae which are sometimes in direct contradiction.

Up to now no formula has been derived which is theoretically well founded
and fits experimental results for the whole range of volume concentration.

A review of these investigations is not within rhe scope of this paper.
Summaries of these may be found in Frisch and Simha (1956) and Reiner (1958).
Instead of an attempt to find an exact formula for the moduli of a

heterogenesus body this work will be concerned with the coustruction of
approximate upper and luwer bounds for the moduli. Obviously such bounds are
of practical value only if tney are close together. It will be found that the
expressions for the bulk modulus bounds coincide. In the case of the shear
modulus they are rzosily close together, as is illustrated by a specific case

which has been solved numerically in this paper. Also a simple expression
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is derived, which is always smaller than the upper bound and larger than
the lower one and can thus be used as a good approximation to the shear
modulus whea~ver the bounds are close.

Apparently the first bounds on an elastic modulus of a heterogeneous
material have been given ir a recent paper by Paul {1959). Bounds for the
Young's modulus of a heterogeneous material were obtained by using the
variational theorems of the theory of elasticity and taking as an admissible
stress system (see Section 2) the same simple fension in matrix and particles
and a simple tension deformation for an admissible displacemen? field. While
these bounds have the advantage of being exact they are far apart because of
the simple admissible stress and displacement fields chosen. Thus for
example for the same material, for which a numerical solution has been
given in this paper, { experimental resuits for this case have been obtained
by Nishimatsu and Gurland (1959) and will be giver below] Paul found that
for a concentration of 50 per cent, the upper bound for Young's modulus
was 43 per cent higher than the lower bound,

In the following general expressions for the elastic moduli of a quasi-
homogeneous heterogeneous material will be developed, involving only the
stresses or strains inside the particles. This is done by considering the
change in strain snergy in a loaded homogenesiis body Jue to the insertion
of non-homogeneities,

m can be obtained by suitable

S
=87t 11e10s, In order to evaluate the

bounds approximately two geometrical approximations are made. It is

Y re e

I

assumed, as in small concentration theory, ‘hat the particles are spherical

and moreover that the action of the whole heterogeneous material on any one
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particle is transmitted through a sphericai shell which lies wholly in the
matrix,

It is believed that this approximation is a close one and comparison

of theoretical and experimental results strengthens this belief,

2, GENERAIL THEORY

Let an elastic homogeneous and isotropic body of arbitrary shape
(Fig. 1a) be subjected to =urface tractions which are associated with a

homogeneous stress tensor

{0) (0)
i,j =1,2,3 (2 repeated subscript
denotes summaiion
{0)
Ty
(o)
Ty constant stresses

are the components of the surface stress vector

n components of the normal to the outer surface

The strain energy U, stored in the body is then given by either of
the formulae

v, —g 0 s (2.2)
)

1 [ (o} (o)

'2‘ J “'ij eij dv (2.3)
)

(o) (o)

where the 0’ij and the straius e,

13
og;;) = Ap e(o) J g * 2G, eg)) (2.9)

Uo—

are connected by Hooke's law

o AR SR il




FIG. | HOMOGENEOUS AND NONHOMOGENEOUS BODIES UNDER
SAME SURFACE TRACTIONS
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In (2.4) A, G, are the Lamé constant and shear modulus respectively,
of the matertal. € is given by

©) - El(:l):) = eﬁ) + eﬁ? . e

and § jj is the Kronecker delta. ©
()
As the strains are homogeneous the elastic displacements u;  are
given by

(
o - g x - (2.5)

If any stress and strain tensors are split into isotropic and deviatoric

parts as foliows:

- O )
0y = 3 by + 8y

- &
& = 3 511 + ey
Hooke's La';v assumes the form
o = 3Ke sy = 2Ge, (2.7

where K=x+-§-G is the bulk modulus and o= oy .

The strain energy density may then be written in the forms:

w = % Ty &y = -;- (1(53-1»2(59ij eu) (2.8)

2\ 9K
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If part of the body is replaced by an inclusion of another material,
the elastic moduli of which are Kps Ap, Gp (Fig. 1b) and the same surface
tractions are applied, then it has been shown by Eshelby {1951, 1956) that

the difference in elastic energy stored in the two cases is given by

. [ )
50 2yl - L | (T‘f) =T, ul% as (2.10)

v

b,

where S is the surface of the inclusion, T; and T are the stress and
displacement vectors on the surface cf the inclusion.

Formula (2.10) is general; it is valid for any inclusion shape and any
boundary tractions.

An alternative useful form for (2.10) has been given by Eshelby, this is:

ol -1 J(V [0 -5 Ve 42 GG oY eyt v 211

This may be rewritten in terms of stresses by using (2.7)

@ _1 { En Ky o, Sm% O 1
ST - [sxmxp *I6.G G, 85y sy J (2.12)

where V is the volume of the inclusion. Again (2.11) is a special case of
Eshelby's result which is vaiid for a nonisotropic and nonhomogeneous
inclusion. When instead of surface tractions, surface displacements are
prescribed formulae (2.10), (2.11) and (2.12) change in sign. ¥ §U when
displacements are prescribed, is dencted by §U‘) then Eshelby has shown
that:

su® - L J_ @ g -7, ) (2.13) - .

(-]
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The derivation of (2.10), (2.11) and (2.12} remains unchanged when
instead of cne inclusion an arbitrary numher N of them is introduced into
the elastic body and surface tractions are held fixed. (Fig. 1lc)

Then the contribution of the ntt inclusion is:
o) _ 1 (0) —(n) _=(m) (0)y -o
chfl ol [ (T, 9 =Ty vy ') dS

(Bp)

n=N
su - Z g (2.15)
n=

Analogous results hold for (2.11), (2.12) and (2.13). In the foilowing,treatment
of the case where tractions are prescribed will be called the stress approach,

when displacements are prescribed - the displacement approach.

The bulk and shear modulus of an elastic body containing a large
number of inclusions of another materiai will now be given in terms of energy
(0)

expressions. It is first assumed that the T; = are equivalent to isotropic

tension

'r§°) -1 o o, (2.16)

s .1 O S s © _ o

ij 3 ij SiJ’

Then from (2.12), for the nth inclusion

éU(:? G Ykl L J ™ av

9K Kp ﬁn)




-8‘
When instead of isotropic stress, isotropic radial displacement
() ¢
uy o =
3
(2.13),and proceeding in an analogous way
- {8 1
) &m =Kp) e(o) _ ) av
(V)
For the homogeneous body without inclusions

(0)°
Uffj = 2 9¢Km v (2.20)

Xy is prescribed on the boundary, thea from (2.10), (2.11) ord

If it is assumed that the heterogeneous material is quasi-homogeneous with

bulk modulus K*

o) 0§ °)

@ _1 o _
=3 3 Vv (2.21)

where (2.21) may be regarded as a definition of the "effective" modulus.
Then,

v, Y 5uP 2@ (2.22)

n=1 n
which on using (2.20) and (2.21) may be written as;
©)

+—j°_-),:

18

where §UY is given by (2.22) and (2.18).

It should be borne in mind that (2.23) iz valid only when the actual
0_(n) are used in (2.18).

Using now the displacement approach the following expressions
are obtained;




(2.24)

(2.25)
(2.26)

Analogous formulae can be obtained for the shear modulus G*. 1t is
convenient to apply the stress vector field

0
Tf ) tn,

(o)

T, tn,

0

0

which is equivalent to the state of stress,

o© _ g [0 _ @

12 - Sz23 =T

O o 0 0,

which is a pure shear.
Then from (2.12):
5Ux(§r) = E?L.:.EE T J’ (n)

5 2
G gy

.

oo
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and using these expressions in (2.22}

@
L $Y__ (2.32)

B S
¢ Gy % =°v

Proceeding in an analogous way when homogeneous shear displace=
ments are prescribed on the boundary, given by

0); (s
u§j= g'xz ; u(a):%x1 ; u§°)=0 (2.33)

the following results are obtained:
(e
- )

o
U(e) =3 Gﬁ v

(e)
m,,_l.ﬁl_._.
2 ¥y

n=N

s0@ - 2 sl

n=1

v = L Gm - G S & v (2.37)
(Vn)

The expressions for the effective moduli depend on the actual stresses
or strains in the inclusions. In the case of small volume concentraticn, when
it is assumed that there is no interaction, these may be determined by
assuming that each inclusion is in an infinite medium where the str2sses or
strains at infinity are the ones applied to the surface of the body. Solving

the boundary value problem, the expressions for the case of small concentration




ella
-

are easily obtained. This procedure is clearly impossible for finite
concentration. On the other hand bounds on the moduli may be obtained by
using the variational theorems of the theory of elasticity.

The theorems of minimum complementary energy and of minimum
potential energy will be here used in their following special forms:

(a) When tractions are prescribed over the entire surface of an
elastic body and the body forces vanish, then of all sets of stresses, satisfying
the equilibrium conditions and boundary conditions, the actual state of stress
minimizes the strain energy U(G),

(b) When displacements are prescribed over the entire surface of an
elastic body and the body forces vanish, then of all sets of displacements,
satisfying the boundary conditions, the actual displacements minimize the
strain energy U(E). [c.f., e.g. Sokolnikoff =~ Mathematical Theory of
Elasticity (1956).] Thus for the special cases mentioned, both theoren:s
reduce to a minimum principle for the strain energy-

In what follows a field of stress or displacements belonging to the
sets described in (a) or (b) respectively will be calied admissible.

If in the stress approach any admissible state of stress is chosen,
the strain energy associated with it may be computed from (2.12) and (2.22).
If the expression § U(O-) thus determined is denoted by § ’Ivl(ah) and U
is the actual strain energy, then from (2.22) and principle (a):

v < Ug’? + $T@ (2.38)

If row in the displacement approach an admissible field of displace=
ments is chosen, the strain energy is computed from (2.11) and (2.22) and
the expression  § U is denoted by §U® < then from principle (b)




-

(€) () (€
v® < v + 43 ) (2.39)
The bounds on the bulk modulus are obtained in the following way:
An admissible state of stress is chosen,so that on the boundary S of ihe
body shown in Fig. 1c (2.16) is satisfied, and § 'fl(ol) is determined.
From (2.38), (2.20) and (2.21)

1.1, §o)
I{"é h Km 0‘(0)
18
which may be rewritten in the form:
*
K > Hm = K, (2.40)
x(a)
1+ ___é_%’__q
(o)
g \4
18 Ky,

Accordingly K:‘ is a lower bound for X

The same procedure is now applied to the displacement approach.
Displacements are chosen so that on the boundary
(0 )

Using (2.24), (2.25) and (2.39) the following inequality is obtained

()
¢ g, + SV - k]

T K. (2.42)
3 )’ v

yradtall k’mv‘»v v 7 N
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Then K: is an upper bound for K*. So from (2.40) and (2.42)

K, £ K" <K, (2.43)

Exactly the same method may be used for the shear modulus and it is then
found that

¢’ < 6" <g¥ (2.44)
where
G
G, = m (2.45)
(o)
1+ (StU
v
26
()
¢F =gy + ¥ — (2.46)
1 ycy

It should be remembered that § ﬁ(c-) in (2.40) and (2.45) are different
quantities. The same applies to 4 ﬁ(e) in {2.42) and (2.46).
The theoretical treatment presented up to this point has been exact,

within the framework of the linear theory of elasticity. In the following some

reasonable assumptions will have to be made.

Consider a body containing a large number of inclusions which are
uniformly distributed in it, (Fig. 2) The body is very large in comparison

to an includon. The volume concentration of inclusions is then deiined by
n=N

- Vn
c = X (2.47)
v

[PON—

Zoawie ey e e ¥
umf,‘,\.,,,;,.v.‘ilmk R e




FIG. 2 HETEROGENEOUS MATERIAL DIVIDED INTO
COMPOSITE ELEMENTS




where V is the volume of the nth inclusion and V the volume of the whole
body. By uniform concentration the following is understood: when choosing
an arbitrary, not too small, volume element of th: body the fractional volume

of inclusions in it is expected to deviate from ¢ only by a small amount.

A system of tractions T§o) derived from homogeneous stresses is
now applied to the surface of the body. Each inclusion is then imagined to
be surrounded by a surface Sy, enclosing a volume Vp, so that for every

inclusion

(2.48)

o
;

It is possible to construct these surfaces S, in an infinity of ways and it
will be assumed that this has been done so as to approach spherical surfaces
as nearly as possible. In the following any element, containing an inclusion
and enclosed by S, will be called - a composite element. (Fig. 3a)

In order to choose a state of stress El_ij which satisfies equilibrium
and boundary conditions it will be assumed that every surface S, of a
composite element is loaded by the tractions Tgo) acting on S. If then the
boundary value problems for the composite elements are solved, the stresses
thus determined fulfil the necessary conditions for an admissible stress
system 5‘113' . In order to solve the problem it {s assumed that the composite
element may be approximated by two concentric spheres so that volumes
are preserved (Fig. 3b). Such an element will be called = a spherical

composite element,

For the displacement approach it is assumed that the surface displace=

ments of 8 are linear and that the surface displacements of each S, are of
the same linear form. When the corresponding boundary value problem for

PR

S ggt wers




(a)

COMPOSITE ELEMENT

SPHERICAL COMPOSITE ELEMENT

FIGURE 3

I s LW

Lo W

AT A P N

¥,
“

PRININE -+ = 2K

o Ll s

”’M*:“M{Wrﬂhwm.mmﬂw




-15-
the composite element is solved the resulting field of displacements will
be admissible.

3. APPROXIMATE BOUNDS FOR THE BULK MODULUS
(a) Lower bound by stress approach.

The spherical composite element is given by a sphere of radius b,
concentric with a spherical particle of radius a, . By definition

¥ 3
AR S (3.1)
Vo by
where
3
f=c (3.2)

The outer surface S of the heterogeneous body is loaded by a

constant radial stress

(0
oﬁ? = -°—'3—~ =q (3.3)

Then the same stress is applied to the spherical surface r =b. (n the
following the subscript n will be dropped.)

The elastic moduli of the inclusion are K, Gp . Those of the
spherical shell = Kp,. Gp, -

The problem is one of radial symmetry the general solution of
which is [ (Love), p. 142]:

P
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B
u(p) =A,r+ -2
T p r?
> For the inside of the inclusion. (3.4)
) -3 Bp
Opp = KpAp - 4Gp :3
m
uﬁ_ ) = Apr + B
 For the spherical shell. (3.5)
(m) Bm
O'rr = 3 KmAm -4Gm -_3.

-
i

The four unknown constants may easily be determined from the four

boundary conditions:

uf‘p) =0 (r=0) (3.6)
uip) B} uf‘m)
(r = a) (3.7
(p) _ (m)
Ter = Srr j
éﬂ =7 (r = b) (3.8)

From the preceding analysis it follows that only the stresses inside

the inclusion are of interest. It is found that:

4Gy +3 Ky

Ap = g: ; (3.9)
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Then

& - axya, (3.10)

rr
From (2.18), (3.1), (3.2), (3.9) and (3.10)

~ ()

~ - 4 G —_—
8 i1 Em Ky Sm+3 Kpm_ v,
n 2 Km (4G +3K5) =4Gp (Km ~Kp) ©
(3.11)
From (2.40) and (2.47),
K = Em (2.12)

.
i T

(b) Upper bound by displacement approach.
It is here assumed that the boundary displacement of S is purely
radial

(0)
ugo) = 6—3—* X = € x4 (3.13)

Accordingly the displacement applied to the boundary of the spherical

composite element is

ug.o) = €r (3.14)

The boundary value problem is solved exactly as before, the only
difference being in that equaticn (3.8) has to be replaced by (3.14) for r=Db.
It is then found:

PR

N s Al Ty
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» 4
Ap= & Gy +3 Ky . (3.15)
4Gy +3Kp+3 (Ky - Kp) -:—5-
By = 0 (3.16)
From (2.19), (3.1) and (3.15),
(€) ~ 4Gp+3X _
U =2 %k -K) m_m V (3.17)
4G +3 Ky +3 (K, - Kp) c
and from (2.42) and (2.47)
Ky = Kp+(&p = Kp) (4 G +3 Kim) (3.18)

4Gy +3K,+3 (K ~Kp) ¢

Comparison of K, given by (3.12) and K given by (3.18) shows that the

upper and lower bounds coincide.

K = K} = x" (3.19)

As the bounds are approximate, this does not necessarily show that the
expression for R.*is exact,

The expression (3.18) can be rewritten in the form

3(1-\)‘”)(% -1)c

K*
m K
21 -2 IJ’. (_p_ ] >
(1-~2 m)+(1+\/m) LKm o 1/c
It can also he rearranged into the symmetric form
(1+ 2)(s - _K_*)
c = \ Km \ Km
* X (3.21)
<f + -—~) ( - =R )
Km Km

wagrared SN LVt Ko aonasatiio 2 sor Tae ¢

Ch,



where f is given by

4G 2(1 - 2 Vi)
s - 24m ____\_).___m.
3Kny 1+Vnm
and \)m is the Poisson's ratio of the matrix. Generalization to the case
when the particles are of different kinds is obvious. Let there be k kinds

of particles imbedded in the matrix. Let ) be the bulk modulus of the ith

particle kind and ¢; its volume concentration. Then (3.20) is generalized
to:

i=k K(l)
o (_I-(L -1])¢
K -1+3(1-Yp) m

1 :
m 1= 2(1--2\)m)+(1+\)m)[:-{éE -(é}L) - 1> c-]
m

Km ]

(3.22)

i=k

C=Zci

i=1
4. APPROXIMATE BOUNDS FOR THE SHEAR MODULUS

The method is essentially the same as for the bulk modulus. A
homogeneous shear stress or homogenenus shear displacement is applied
to the boundary S and also to the spherical surface S, of the spherical

composite element. Because of the absence of radial symmeiry the boundary

value problem to be solved is much more difficult than that of the preceding
section. Its formulation is as follows:

s e e A R gttt B A




Solve the two systewms of field equations of the theory of elasticity:

(Ap +Gp) eff) +6, 7 ul® - g
(4.1)
®_ (@
€ = ui,i )
(Am +Gm) E»(;n) +Gq v ui(m) =0
/ 4.2
@ (@ “2
€y )

where: i=1, 2, 3, a comma denotes partial differentiation, a subscript or

superseript p denotes the inclusion, a subscript or superscript m denotes
2 32
the shell, v mi-

denotes Laplace's operator.

The boundary conditions are;

ui(p) =0 {r = 0) (4.3)

ugp) = u(im) (4.9)
(r = a)

'rgp )L (4.5)

Tfm) = Tn,

™™ o o ) (r = b) (4.6)

™ - o

Equations(4.6) express the condition that pure shear, d;, = T, is applied
to the boundary in the stress approach. The direction cosines n; are
given, for a spherical surface, by

n = I (4.7)

r
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In the displacement approach a homogenreous shear displacemert

is applied to the boundary. Then (4.6) is replaced by:

ufm) - _}g ‘sz 3

(m) 4 _

u, =3 ¥ x, P (r =1 (4.8)
(m) _

b 0 )

An exact closed solution in terms of solid spherical harmonices is
given in the appendix to this paper. Proceeding in a way analogous to that

of section 3, the following expressions for the approximate bounds for the
shear modulus are found (see appendix A)

G = Sm (4.9)
Y-y e .
Gy = Gy [1+(7 -1y ¢] (4.10)
in which :
G
. %
¥4 a

and yf‘“) and y{& are defimed by equations (A=28) and (A=31) in appendix A.

ke At ¥

So according to (2.44)

e

* ne(:u

Ay e n s

As for the bulk modulus the results can be easily generalized to the
case of different kinds of pariicles. Using the following notation:

e bl iR s 28
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i
GI(J) shear modulus of ith kind of particles
s
i Gm
izk
23
Jo=c¢= 2_ ci
i=1

where k as before, is the number of different kinds of particles, equations

(4.9) and (4.10) are now replaced by,
" i=k 1
G, = Gnm Z ©)
i=1 1+ =79y ¢

Gh = Gy Km _Z -1) y,(l) cl] (4.12)

The (’1) and Yf()o

(4.11)

are determined from (A-28) and (A-31) for the values

G,\;) and V g’ . The value of f is not affected and is as given above.

The results for the shear modulus are much more complicated than
the simple expression for the bulk modulus obtained in section 3. Whenever
the bounds for the shear modulus are close together a formula which gives
values which lie between them can be regarded as a good approximation. A

simple formula of this kind is derived in appendix B. The result is:

15(1~Vm)(6_2 -l)c
G* .1 Gm (4.13)
Co & /G ‘
T=5Vy +2(4=5Vy) G -(G “1ije
m

«

‘v.,m.,uuﬁle.w [T PR TREIN
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When there are k different kinds of particles

i
. &
=% i=k o 1 Ci
G S— “m
E—-=1+15(1'Vm) L
T=5V +2(4=5)) ) P.<2(4~5Y -1je
ot 2046 M) g =204-5 o) - 1)
(4.149)
It is shown in appendix B that
G’ < G*<GX (4.15)

In view of the numerical calculations and comparison with experiments
which will be given in the next section it is necessary to determine what bounds
on Young's modulus are given by the bounds on the shear modulus. It is easily
proved that an upper or iower bound on the shear modulus gives the cox:respanding

bound for Young 's modulus. Assuming that G, and G, are lower and upper

bounds, i.e.

G, > G, {4.16)
Then
9K G,
E, =
3K+G,
9K G
E, = ——n
3X+G,

for the bounds for K coincide. Then,

i
b

1

:
N
b3
#
:
Ry
*
i
g
x
=
<
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1




from inequality (4.16). So

E, > E, (4.17)

It is easily proved, in a similar way, from the expression of Poisson's
ratio by tke bulk and shear maoduli, that the upper bound to the shear modulus

corraspoads to a lower bound on Poisson's ratio and vice versa.

5. ZXPRESSIONS FOR THE MODULI FOR VERY SMALL AND VERY LARGE
CONCENTRATIONS

A small concentration formula for a modulus of a heterogeneous
material is one that is valid when squares and higher powers of the volume

concentration of the particles can be neglected. Thus for very small ¢

*

K

= =1+ ac (5.1)
Km

-«

G -1+ 8c (5.2)
Gm

The numbers ¢ and S may be inierpreted as the slopes of the curves

"modulus-ccncentration” at ¢=0.

Similarly large concentration formulae can be defined by

*

K_=1+a¢ (5.3)

Kp

o [

g_. = 1 *ﬁ ¢ (5.4)
o

U330 At 2o g8
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in which
e'=1-¢ (5.5)

and c is very close to unity.
The value of a is easily found from (3.20) when the term containing

¢, in the denominator, is neglected. The following expression is obtained.

K

x 3t -V (1- 2R)
ol KmK (5.6)
" 2(1-2V,)+(1+ V) EIP;I

For the shear modulus equations (A-23) and (A=31) have to be solved
3
for the case where L= ¢ is very small, The upper and lower bound
expressions for small concentration are then found from (A-35) and (A-36).
It is found that both expressions are the same and reduce to:
G
15 (1 =Vl (1 - 22 )
# Gm
%- =1~ G c (5-7)
m - i 2
T<5Y, +2(4~5Vy) o

Thus the upper and lower bound have the same slope at ¢ = 0. Expressions
(5.9) and (5.7) have already been given, in the same form by Hashin (1958) and
in another form by Eshelby (1957).
The same procedure can be used for very large concentrations. The
results are:
(1-32) [2(1 -2V )+ (14 V) %]

*
2. -1 P - c' (5.8)
Kp 3(1-Vy)
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CGm) o, . Gp

& (1 EE)['] 5Vm +2 (4 < 5Vp) Gm]

2. =1- c' (5.9)

Gp 15 (1 = V)

Again the expressions for the shear modulus are the same; so the upper and
lower bound have the same slope alsoat c=1, )

It is worthwhile to note that there is a simple relation between a and
o' defined in (5.1), (5.3) and 8 and B' defined in (5.2) and (5.4). From (5.6)
and (5.8)

oo’ =(1 - %) (1 - %) (5.10)

From (5.7) and (5.9)

BB = (1 - gﬁ) <1 - %‘f) (5.11)

L4

Formulae for Young's modalus for small and large concentration can

now be easily derived. The relation between Young's modulus E and the bulk

and shear mcdulus is given by:

_ _9KG \
E =g (5.12)

Introducing (5.1) and (5.2) into (5.12) and linearizing with respect to ¢ gives

¥
E_ _ 14 3%pB+Gpe (5.13)

Em 3Km+ Gm

Similarly for iarge concentration, using (5.3) and (5.4),
E .1, 3KpB 4Gy

2 {5.14)
Ep 3 Kp + Gp

The quantities @, 8, @' and B' are given in (5.6) = (5.9).
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6. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The theoretical results ohtained above wili now be used for a
numerical comparison with experimental measurements.

A suitable example is given by Tungsten Carbide =Cobalt alloys (WC~Co)
the miero=structure and mechanical behavicr of which have been extensively
studied. The most recent experimental work on this alloy is given in papers
by Gurland (1959) and Nishimatsu and Gurlaad (1959).

The alloy prepared consisted of WC particles imbedded in a matrix of
Co. The experime;1t31 results of chief interest for the present work are
measurements of Young's modulus of the alloy for varying volume concentrations
of one phase relative to the other. These results are given in Table No. 1.
Another quantity of interest is the contiguity which is defined as the average
fraction of surface area shared by a grain of WC with a1l neighboring grains
of the same phase. It has been assumed in the theoretical analysis that the
contiguity is zero for all concentrations. This can clearly not be expected to
nold for an actual alloy. Table No. 1 contains the measured contiguities. The
volume concentration ¢ refers to the WC phase.

The values of the contiguities show that there is a definite preference
for the Co phase to be classified as the matrix. This is also shown by
photographs of the microstructure of the alloy, at different concentrations,
which are given in the above cited papers.

In accordance with the preceding analysis the moduli of the WC will
be given the subscript p and those of the Co the subscript m . Then in the

present case

H]

102 x 105 psi
0.22

E, =30x 100 psi Ep

TPl

B v mxr s
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Using the formulae

. _E

K= 355 (6.1)
B

G = 3Ty ) (8.2)

the values of the bulk and shear moduli for the two phases are:

Km

25.0 x 10 psi K, = 60.7x 106 pst

G

11.5 x 10 psi G, = 41.8x 10° psi

The variation with volume concentration of the bulk modulus K*, of

the bounds for the shear modulus G. and G.* and of G*, have been

determined by the method given in the theoretical part below. Young's

modulus and Poisson's ratio have then been calculated from the expressions:

_ 9KG

E = 3K+G (6.3)
3K - 2G

Vo=
T BE+G) (6.9)

In (6.3) and (6.4), K™ given by (3.20) is used for K. The bounds on E™*
and V¥ are obtained when introducing the bounds G, and G¥ for G.
The quantities E and ¥" , which are obtained when using G (given by
(4.13)) for G, may be regarded as approximate values for the Young's
modulus and the Poisson’s ratio of the heterogeneous material, whenever

the bounds are close. The restults are given in Taktle No. 2 below in form
of ratios to the matrix moduli.

I L i
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Figure 4 shows the calculated variation of the bul': modulus of the
alloy. Figure 5 gives the bounds for the shear modulus and the variation
of E*, Fig. 6 = the bounds for Poisson's ratio and \_)*, Fig. 7 = the
bounds for Young's modulus and E¥, In the variations of the moduli
results of formulae for small and large concentration, given in Section 5
are shown as straight iines tangent to the curves at concentrations 0 and
1.0.

It appears from the figures that the bounds are quite close together
and are themselves good approximations to the values of the moduli. The
experimental results given in Table 1 are plotted in Fig. 7. This shows
that the experimental points closely follow the curves predicted by theory.

7. DISCUSSION AND CONCLUSIONS

It has been shown that approximations to bcunds for the elastic
moduli of composite materials can be determined by use of the variational
theorems of the theory of elasticity. For a specific example of an alloy for
which experimental data are availabie it was found that the theoretical
results are close to those found by experiment.

The mathematical expressions for the bounds for the shear modulus
depend in a rather complex manner on the ratio between the shear moduli
of the two materials and their Poisson's ratios. It is therefore difficult to
give a general criterion for the closeness of the bounds.

A possible procedure, which is applicable to specific cases, is the
following: The quantity A given by,

#
A:‘Ea_-l
*
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is evaluated numerically at a concentration of 50 per cent. This will give
2 good estimate of the maximum difference between the bounds. Whenever
A is small enough, " given by (4.13) can be used as the shear modulus
of the heterogeneous material,

It is to be expected that whenever the difference in moduli between
particle and matrix material iz not too large, the bounds will be close
together. It should be noted that for the WC~Co alloy the ratio 77 between
the shear moduli was 3.62 which is certainly not smali. The bounds were
nevertheless close together. It is consequently believed that the simple
expression G* can be used with good accuracy for many practical cases.

A different situation may arise for such extreme cases as rigid particles
or empty cavities. This is further discussed below.

An important property of the appreximate bounds should be emphasized.
At both extremities of the concentration range, ¢ =0 and ¢ =1, the slope is
the same for both the upper and lower hounds for any elastic modulus of the
heterogeneous material. This provides some additional foundation to small
concentration theory and introduces large concentration formulae which, it is
believed, are of the same order of accuracy as those for small concentration.

Some consequences of a basic assumption made in this work should be
pointed out. It has been assumed, that at any concentration, a particle can
always be surrounded by a surface which lies wholly in the matrix. In other
words, the matrix always remains connected. A possible geometrical
configuration of such a material at high concentration is shown in Fig. 8a.

Another possibility is a heterogeneous material which is an
agglomeration of grains of two or more different materials. A concentration

of 100 per cent is reached when all grains are replaced by grains of one

5yt e b btk L mine v v hbe 2u 3

T |




~—

ORI
R
WiaaY\Ye!
,/J&.aw//w%,rﬂ?é‘é%
R
wo%%zp///,é,./ém.//
AR R

e,

N
oo

(b)

{a)

FIG. 8 STRUGCTURE OF MATERIAL AT HIGH CONCENTRATION
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material. The geometrical configuration of such a material at high
concentration is shown in Fig. 8b. In this second case there is no
preference of one material over the other. The expressions for the moduli
have to be invariant for replacement of one material by another and of ¢
by 1-c.

The analysis given in this paper applies only to the first case and
it should be expected that for two such materials, composed of the same
constituents, the difference in moduli would increase with increasing volume
concentration. This is illuminated by the fact that while small concentration
formulae for these two materials are the same, the large concentration
formulae are not.

The two materials described should be regarded as extreme
theoretical cases. The structure of an actual heterogeneous material will
in all probability be somewhere between the two.

The theory developed in this work may be easily applied to the special
cases of a body containing empty cavities or a body containing rigid particles.

In the first case

Kp=0 ; G, = 0

and in the second
Kp—» (0] H Gp —

Equations (A-28) and (A-31) are greatly simplified in these two cases and the
bounds can be easily expressed in closed form. Numerical calculations show
that the bounds so obtained are further apart then for the alloy treated in
this work.

RS LA
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The case of cavities is importunt for the study of porous materials.
The solution for rigid particles can by mathematical analogy be applied to
the rroblem of the viscosity of a suspension. As there is complete
mathematical analogy between the theory of incompressible elastic media
ard the theory of Stokes flow (viscous flow when neglecting inertia terms in
the Navier-Stokes equations), the results for the shear modulus of an
incompressible elastic body containing rigid particles will hold for the
coefficient of viscosity of a viscous fluid in slow motion, containing rigid
particles. However for both cavities and rigid particles a special difficulty
appears - the range of volume concentration will not extend to 100 per cent.
When the skeleton of a porous material breaks down the volume of solid of
which this skeleton is composed is not negligible in comparison to the volume
of the voids. Alsc the flow of a suspension will cease, i.e. = the coefficient
of viscosity becomes infinite, at a concentration of 50 per cent =60 per cent
of particlos.

It seems that the method given in this work cannot be applied without

modification to these extreme cases.
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APPENDIX A
PROBLEM OF SHEARED COMPOSITE SPHERE

AND BOUNDS FCR SHEAR MODULUS

In the following a solution to the boundary value problems, set up in
section 4, will be constructed.

General solutions for the elastic sphere and the elastic spherical
shell have been given by Lord Kelvin (Thomson) and Tait (1879), and Luré
(1953) for the general case and by Sternberg, Eubanks and Sadowsky (1957) for
the axisymmetric case. It is in principle possible to construect solutions for the
spherical inclusion and for the spherical shell, leaving enough arbitrary constants
to fit the boundary conditions.

The first two general solutions are very difficuit to use owing to wie
complexity of the general solution for the spherical shell. The axisymmetric
solution is more explicit and it can be applied to the present problem by
superposition of axisymmetric tension and compression at right angles. A
simpler method of solution will be found by proceeding in a less straightforward
way.

The problem of a spherical inclusion in an infinite elastic medium, the
moduli of which are different from those of the inclusion, when the stress at
infinity is uniform {or the displacements are linear) may be solved in a
convenient way by application of Kelvin's general solution of the problem of
an elastic sphere [ (Love) pp. 265-270] .

In the case of pure shear in the 1, 2 directions it is found for the region
exterior to the inclusion that displacements and accordingly stresses, may be
expressed in terms of a solid spherical harmonic of negative integral degree

- 3 ,

rbos
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Yoy = (A1)
and its derivatives.
Love (pp. 249-251) has given three special solutions to the field
equations of elasticity and it can be shown that the solution of the problem just
mentioned may also be found by superposing Love's w and ¢ solutions.

Tuaese are in vector form:

Type
W=r’gradwpg+dquy, ¥
(A-2)
o = -2 nA+(3n+1)G
m+3)A+(n+5 G
Type ¢
T = grad ¢, (A-3)

For the infinite medium in pure shear the solution can be constructed

by putting

“n = 0= ¥(-3)
fn the problem given by equations (4.1) = (4.8} the exterior region is a finite
spherical shell. It is reasonable to expect that the solution can be constructed
by using also the solid harmonic of positive integral degree associated with
W(-3).
If ¢, isa solid harmonic of positive integral degree n then:

¥n

Yope1 = — B
a p2n+1

P

)

oo sy
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is a solid harmonic of integral degree <«n<1. [Compare e.g. MacRobert

(1948) p. 74] So in this case
Y2 = %, X%, (A-9)

The elustic displacement in the spherieal shell can now be written as

follows,
s® .z 70, x, v, 5, v® .15, v? (A=5)
where,
?® - grad (x, x,) (A=6)
7@ - grad (an:z) (A7) . .
7 - grad (x, x,)+ 0™ g, x, T (A-8) ‘
2 - g grad(ii:"z.) + ag)) 3‘-;-;‘-2- 2 (A-9)

According to (A-2)
a, = -9 ———

(A=19) :
5An + TGy
t 8G
a(n') = 3Am +8Cm (A-11)
(=3) Gp,

Similarly for the interior of the inclusion

20 - g, 7, B, #®

B, =B, =0
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The last equation is derived from the fact that u(p) vanishes for r = 0.

¥or the interior region
7@ = r® grag (x, x,) +ce(2p) R R, ¥ (A-14)
a(p) =-9 M (A-15)
2 5lp +7Gp
In the following expressions for the stress vectors on a spherical

surface will be needed. These may be determined by diffcrentiation of the
displacements and are given for the special type soluiions in Love

{pp. 250-251). Introducing the nondimensional constants

A, = A,
AZ = a; X2
A3 = az K.B
. - (A-16)

A, = =K

b g 22 p
B, = B,
BB = az —3

and using the formula

A - _2
G 12V

where V is Poisson's ratio = the stress vectors on a sphere of radius r

where a ¢« r ¢ b are given by the following expressions:
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(m) 2Gp {[ T+2Vy 14+V
T, "= “{| A -4A, 3 - Ayl %,
r -4Vm 1 -2\)m |
l- T+5Vy 12 X,
+ 1204, -2 A, - Ay ke (A~17)
L 7~ 4V, 1-2V 2
2G 2
T(:Il):: ___—E ([Al ‘4A2 7+ m s 1 "'Vm A’* .
r 4\)m 1 2Vm
[ 7+5V 7 & %2
eg —2m o, 12 1 L2 .
+ [201&2 2 iy, A o2 v Al == } (A-18)
J

m) 2Gpy Lo T#5Vpy ___ 12 X; X; X3 .
'I‘(3 == 204, -2 7'4VmA3 1-2va*, (A-19)

For the interior of the inclusion 0 <r¢a

2
ol =——P-2(: { [B, + 77——3*‘21)) B;l X, =2 7_..9“:‘,) B, & x} (A~20)
l P e

The remaining components are easily written down by analogy with (A-18) ~
(A-19),
The expressions for the displacements are: For the shell

ag<rghb




u(:n) = (A +A, +A; +A,) x, +
/ 710V, 3 X, X
+(=54, -2 =10 A, : A> L7z A-21
k 2 7-4\)m 3 1'2\’m 4 e ( )
u(zm) = (A +A, +A; + Ay X, +
7«10V, . 3 N\ X %,
+ (54,02 7-4\51;1!;l As+ Toos AY . (A-22)
(m) ( 7-10Vm 3 ) X X3 X,
u = {(=B5A,*2 T A, + T —_— (A-23)
3 N T=4V 2T 1-2V, 7Y r?
For the interior of the inclusion, 0 <« r < a:
710V, xZ x
u(lp) = (B1+B3)X2 -2 m—p- B3 ‘J';Z'g' (A'24)
p

and the other components foilow by analogy.

The two boundary value problems for the elastic composite sphere
may now be easily solved. The expressions given for the displacements
already satisfy equations (4.1), (4.2). Equation (4.3) is satisfied by the
components of TP given by (A-24). Setting {A-21) equal to (A=24) in
accordance with (4.4), (A=17) equal to (A~20) in accordance with (4.5) and
equating to zero coefficients of x, and xf X, = 4 linear equations for the
six unknown coefficients A,, A,, A,, A,, B,, B, are obtainad.

It should be noted that equating of other components of displacement
and stress vectors does not give new equations. This follows from the form

of the expressions and may easily be understocd by the symmetry of the

PRy ﬂl;ha\;d“'“" e




«30«
problem with regard to the bisector plane drawn between the x, x; and
X, X3 planes, 3
Two additional equations are obtained for each of the problems, either
from (4.6) and (A-17) or from (4.8) and (A-21). The problem is thus reduced
to the sclution of six linear equations with six unknowns.

For the stress problem the matrix of coefficients is as follows:

ASo-) A AP Al B{G) 5l
wm|1]1 1 1 -1 -1 0
7-10V, 3 7-10V
@0 ]-5 |-2;—-0 | _ =2 0 | 2552 o
7-4V, 1-2Y 7-4\)p
|
742V 1+ V 7+2Vp *
¥ )11 -4 7<4 V 1-231 T 0 :
” » o 7-4v,
T+5Vny 6 T+5v '
, (49 | 0] 10 T 7-4v T1-2v 0 KEpwiv 0 -
P m m p
7 +5Y 5
03 m 1 0 3
551 0 | tof - 7. I R wee vt I 0 0
(5) T-4 f 1-2V
T+42Vp 1 | 1+ Yy o z T
|14 TR | TooT 0 ° |7en : ]
() | =4f T-4v, P | T2V 2 Gm .
(A~25)
where B
Gp
- ’7 = E: (A.zs)

and f has been defined by (3.1) and (3.2).
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For the displacement problem only rows (5) and (6) in (A=25) undergo

a change. These are now:

RN A9 A9 |50 |50
7=-10V,, 1 3
| o | -5° [ ~2——N £l olojo
reaN, T T2
@ 1| £° % s 0o |o|4&
(A-27)

The system of equations {A-25) may be reduced after various
rearrangements and application of rules for evaluation of determinants to

a system of two equatimsin two unknowns:

y(<1‘){ L

Pf)( +y‘§){[(7-1ovp)-(7-1ovm)@j 4f"- (7+5Vin)f’} =0
[

m
(A-28)
Y(:”h* 15(1‘5vm a-ma-5) 4 25 (g5 ~) -
in which,
© _26p (g@, 21 _ 0
) z [B‘ *5(7-4vp) 3} B
rom (A-29)
Y(g) = 5'c'm B:)
_ 4(7=-10Vp) 47 {T+5V))
V= 35 (1 - ) (A-30)
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The system of equaticas associated with (A-27) may be reduced in a similar

way to:
W {2 5 - A 01100010491 4ea 110 o 0
(A-31)
y<f>{~q+ e e 25 :f):) it )]s arv(h -1) -1
‘ in which
y(f) =% [B(:) 5(7 314\)1,) (36)] (=82
y(:) i, % B(Se)

and 7% is given by (A=30).

The quantities § U‘g ) , & U(fl) are best dctermined in this case from
equations (2.14) (2.13) using (A-21) and its analogues, and {(A~24) and iis
analogues. The unknown constants B, , Bz are determined from (A-28)
and (A-29) for the stress approach and from (A~31) and (A-32) for the
displacement approach. The ’1‘(10) and u(io) appearing in (2.14) are given
by (4.6) and (4.8) respectively. (Because of the thecrems that when an
elastic body is loaded by constant stress this stress system is found at
every point in it; when deformed by linear surface displacements this
displacement field is found throughout it.) Carrying out the integration the

following expressions are found:

b



Then from (2.45) and (2.46)

Gm
1+(1'°?)Y(f’7c

G,

G5 = Cp[l+(q-D7Y c]

where (2.47) and (2.22) have been used.

@

The actual expressions for y,’ and y(f)

are clumsy and it seems

best to determine them numerically when numerical values of Kp,, Gy

€
and Kp, Gp are given. It should be noted that y(f ) and y(,) are functions

of f i.e. of the volume concentration c.
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APPENDIX B
APPROXIMATE EXPRESSION FOR SHEAR MODULUS
The expression (4.13) for G * can be derived in the iollowing way.
The system of equations (A-28) is written in the form

@ & &
2, ¥, +23, ¥y, =0

B-1)
G
And analogously for system (A-37),
(e) (e € €
axz Y£> + a&l Yg) =0
(B8-2)
© (@ © @
a, ¥, +dp, ¥, =1
Then,
YSG) = ——-——:Lr:r—r.:- (B"Q)
) () 243 357
a3 * G
a2
Q] 1
1 7 QR (B-4)
{€) 251 25,
R
a2
The quantities 3°) and 7% are defined by,
) 1
?1( ) = (0') CB'5)
23
371(5) = —l—- (B°6)
©
22

«{; .
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) .

i y(fy ) and y(f' in equations (4.9) and (4.10) [ (A-35) and (A-36)
in Appendix A] are replaced by ?,(6—) and 37'1(6) , the resulting expressions
are:

G 1

é— ) (] ®=7
m 1+(1 -'7} Yy ' ¢c

~ %

G, - 1+(n=1) ?l(e) c (B=8)

Gm

Introducing the coefficients a(g? and z,, from (A-28) and (A-31) it

turns out that,

H

— p—
., =G, =G™ (B=9)

0

where G is given by equation (4.13).
It can be proved that for all values of c,

X =t

G < G

<G, (3-10)

The proof is somewhat tedious und only its outline will be given here,

This is as foiiows:
(a) The quantities yf ) and yf) are always positive.

From the definition of § U(G.) and § U(e) it f£ollows that when the
moduli of an inclusion are larger than those of the medium & U(o—) is negative
and 4 U(E) is positive. When the moduli of an inclusion are smalier than those
of the medium the convers« is true. Applying this to equations (A-33) and
(A-34), statement (a) follows.
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3
(b) The following relations hold for the coefficients a(..o-) and a()

i) ij *
@ €
Ay 5 2y, T ay,
(@) ©®
Q2 T 2z, = 2,
(B-11)
() (o)
3 " 23 =(0-7)c
(€} @)
2, = a3 = 35(1 ~Vp) VU J
a; >0 for 7 >1 )
2, <0 for m <1
(<2
40 <0
(s
a:;) >0 7 (B-12)
a,, >0
€
agl >0
€
s >0 ]
\ +3 (0-) nwd W(E) 1. £, . . sss
{c} The guantities y,  and y, satisfy the following inequalities:
5) { 5 o i
Y, 2y, for 7 >1 (B =19)
7 < 8 for 7 <1 B-14)

This follows from (B=3) and (B=4) and the inequalities given in (b).

—
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(d) The approximate bounds satisfy the necessary condition:

P e oy (B-15)

This follows from (A-35), (A-36), (B-3), (B-4), (B~12), (B~13) and
®B-14).
() The quantities G, and G are related to G and G, hy the following

inequalities:

oy

s GX (B-16)
G < G, B-17)

This follows by introducing (B +5) and (B=6) into (B<7) and (B-8),
(B~3) and (B~4) into (A-35) and (A=36) and then comparing G, with G,"
and G with G, using (B-12).

Sc according to (B=18), (B=17) and {B-9)- (B~10) is true.

The proof remains essentially unchanged for the case when the
particles are of different kinds.

Equation (413) may be rearranged into a symmetric form analogous

to (3.21),

7 G N/ G*\
e )t &)

e = ‘i o (B-18)
/ G\ / G \
lg +g=l1- =E/
\ m/\ Ym

In which
. )

g = l-5‘rm

2(d -5V}

Note also that (4.13) satisfies the slope conditions (5.7) and (5.9),
as it should.
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Table 1

Experimental results for WC-Co alloy (Ref. 17)

¢ £(108 psi) contiguity

0.0 30

10 33 0.16
0.35 46 - 48 0.29
0.50 54 - 55 0.42
0.63 61.5 047
o7 72.5 0.54
0.90 88 0.6
1.00 102
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Table 2
Theoretical resuvlts for moduli of WC-Co alloy
£ | & | & | e | B | B | E

¢ Km G Gm Gpp, Ep Ep Em
0.00 1 1 1 1 1 1 1
0.20 1.167 1,227 1.262 1.287 1,218 1.245 1.269
0.40 1.373 1,516 1.600 1.665 1.495 1.561 1.619
0.50 1.495 1,711 1.807 1.887 1.678 1.753 1.823
0.60 1,633 1.953 2.049 2.133 1.904 1.976 2.050
0.80 1.970 2.627 2.678 2.733 2.516 2.549 2.599
0.90 2.181 3.080 3.098 3.120 2.919 2.932 2.951
1.00 2.428 3.622 3.622 3.622 3.400 3.400 3.400

c v v* v
0.00 0.30 0.30 0.30
.20 0.291 0.287 0.282
0.40 0.282 0.273 0.264
0.50 0.275 0.285 0.256
0.60 0267 0.258 0.249
0.80 0.245 0.241 0.236
0.90 0.232 0.230 0.229
1,00 | 0.22 0.22 0.22

v
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